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Abstract 

The plastic phases of single crystals of adamantane 
(C~0 H16) and 2-adamantanone (C~oH14 O) have been 
investigated by X-ray diffraction at room temperature. 
The structure factors were calculated by a cubic 
harmonic analysis. The plastic phases of these two 
compounds are both cubic, space group Fm3m, Z = 4, 
with a = 9.455 (4)/~, for CIoH~6 and a = 9.524 (4) A 
for C ~0H~4 O. The average density of the tertiary carbon 
atoms which have a very sharp maximum in the [ 11 1 ] 
directions necessitated the use of cubic harmonics and 
rotator functions up to the order 12. The translational 
and librational displacements are so small that the 
coupling between orientation and position of a mole- 
cule does not change the experimental structure factors. 
All the results obtained with this method agree very 
well with those resulting from the Frenkel-model 
structures of these compounds. 

!. Introduction 

The normal structure investigations of these two plastic 
crystals at room temperature have already been 
reported: C~0H~40 (Amoureux & Bee, 1980), C~0H~6 
(Amoureux, Bee & Damien, 1980). In these Frenkel 
models we used two uncoupled isotropic Debye-WaUer 
factors; the first one for the librations and the second 
for the translations. However, the librational tempera- 
ture factor gave only rough information about the 
molecular librations. 

We have studied the molecular reorientations of 
these two compounds with two different techniques: 

pulsed and wide-band NMR (Amoureux, Bee & Virlet, 
1980) and incoherent quasi-elastic neutron scattering 
on single crystals (Bee, Amoureux & Lechner, 1980). 
In these techniques the theoretical calculations were 
always carried out with the classical Frenkel model and 
we wanted to examine the validity of this hypothesis for 
these two crystals. We also hoped to obtain some 
information on these reorientations by way of the 
molecular orientation functionf(o)). 

II. Cubic harmonic analysis of plastic crystal 
structures 

In this paper we use a general method for structure 
investigation given by Seymour & Pryor (1970) and 
Press & Hiiller (1973). We assume that the lattice is 
cubic and that the molecule has the symmetry m3m, 
43m or 432. The structure investigations of plastic 
crystals published up to now and using this cubic 
harmonic analysis have always been carried out with 
neutron diffraction data and for molecules with only 
one kind of atom. Therefore we derive, in the following, 
equations for cubic harmonic analysis of X-ray 
diffraction data and for molecules with these particular 
symmetries (m3m, 213m or 432) having several dif- 
ferent kinds of atoms. In the following we use the 
notation of Press & Hiiller (1973). The structure factor 
F(Q) can be written as a product of two terms (if the 
coupling between translational and rotational motion is 
neglected): the first corresponds to the librations and 
the second to the centre-of-mass motions. 
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As we are dealing with cubic symmetry, we use an 
isotropic translational Debye-Waller factor. Then 

F(Q) = exp [ - Q  2 (u2x)/2]Fr°t(Q). (1) 

The rotational form factor in X- ray  diffraction for a 
molecule with atoms arranged in s shells (s = 4 for 
adamantane) with n.  equivalent atoms on the ~th shell 
can be written as: 

The atomic positions and therefore the orientational 
average nuclear densities b,(O',~o') in this primed 
system are known, btU,,m , which is the Kt,,m,(Or, ) value 
corresponding to the polar angles of an atom of the gth 
shell with respect to the molecular axes can then be 
calculated. 

As C,(r)  = ff(o)) bu(r') do), Press & Hfiller (1973) 
have demonstrated that: 

s 
Fr°t(Q) = ~" n. fu(Q) f exp(iQr) Cu(r) dr. (2) 

u = 1 cell 

Q is the momentum transfer and f , (Q)  and C,(r)  are 
respectively the atomic X-ray scattering factor in 
electrons and the average density of an atom of the/zth 
shell with respect to the crystal structure built up with 
the centres of gravity of the molecule. 

C,,(r) can be expanded into symmetry-adapted 
functions, which are in this case the cubic harmonics 
Kt. m (Appendix A). 

If we call OQ and O r the polar angles of respectively 
the scattering vector Q and of r, given a coordinate 
system defined by the standard crystallographic axes, 
then one can write: 

C.(r)  = 3 ( r -  R. ) / r  2 C.(Ocp) 

-- 6 ( r -  R . ) / r  2 Z C",,z Kl, m(Or)" (3) 
l , m  

So 
s 

Fr°t(Q) -= 47r ~" n . f . ( Q )  ~ i t j t(QR.)C~,mKI, m(OQ). 
u=l I,m 

(4) 
R,, is the radius of the /zth shell with respect to the 
centre of mass of the average molecule, Jt is the 
spherical Bessel function of order l, and C.(O,~o) is the 
orientational average density in the crystal lattice of the 
atoms of the ath cell. We callf(w) the probability that a 
molecule is in an orientation specified by the Euler 
angles (a, fl, y) with respect to the crystal axes. 

If we take into account the site and molecule 
symmetries, we have 

1 

- -  Z (21 + 1)A t Utmm,(W) 
f (o))  = 87? lmm' ram' 

with 

A ° l l  = UOl = I, (5) 

where the  UImm,(go) are the cubic rotator functions 
(Appendix B). If b .(r ' )  is the nuclear density of an 
atom of the /zth shell with respect to a coordinate 
system (primed) fixed in the molecule and rotating with 
it; 

b . (r ' )  = 3 ( / -  R. ) / r  '2 b~.(O', ~p') 

= 3 ( / - -  Ru)/r '2 Z blU',m ' Kl',m'(Or')" 
l ' , m '  

(6) 

Then 

Atom, l, m" Ctm= E l b" (7) 
m I 

with 

Fr°t(Q) = ~ itAtmm, Ttm,(Q) Kt, m(OQ) 
I rnm ' 

= R[U°t(Q) + ilIFr°t(Q)] (8) 

s 

Ttm,(Q) =47r Z Jt(QR.)b~, , , , 'n . f . (Q) • (9) 
p . = ,  

Owing to the symmetry invariance of the site and of the 
molecule, the cubic harmonics belong to the totally 
symmetric representation A1 and so only a few 

I coefficients A ram' are different from zero. 

So for a ~.3m or 432 molecular symmetry: 

8[UOt(Q)] = TO(Q)/v/i-~ 

5 
+ ~" (--1)PA]~.T]P(Q).K2p.,(OO) 

p = 2  

2 

A ram" Tm . . . .  "~- E ' 2  ' 2  (Q).KILm (OQ) + 

m, m t =  , 

[[vr°t  (Q)  ] = Z ( - 1 )  p --zza2P+l . T]lP+, ( Q )  
p =  1, 3 ,4  

× K2p+,,I(OQ). (10)  

For a f.c.c, unit cell, the space group of the average 
structure can be Fm3m in two cases: 

- if the molecule is centrosymmetric (i.e. m3m 
symmetry): then 

T](Q) = T~l(Q)= T~(Q)=  0. 

- if the time-average positions of the molecule are 
centrosymmetric: then 

AL =0. 

With the usc of these preceding cubic harmonics Kt, m 
(Appendix A), as 

Kt.m(h,k,l' ) = (--1)' Kt.m(k,h,l'), 

we have: 

IUot(h,k,l')l = I FrOt(k.h,l')l. 
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To describe the space group with no fourfold axis as 
Fm3 and F23, we then should have to use other cubic 
harmonics. 

111. Structure investigation of  adamantane, CIoHI6 , at 
room temperature 

The 90 experimental structure factors, the definition of 
R w, the method of refinement and the five parameters 
defining the molecule are those described in the 
preceding paper (Amoureux, Bee & Damien, 1980). 

For the four atomic shells of the adamantane 
molecule, we calculated (Appendix A) the b u which l, m'  
gave us the T~,(Q) values. In order to find the correct 
space group (Fm3m, F43m or F432), a refinement with 
all the nine parameters (u2x), A~l, A]~, A61, A]~, A~,  
A9~, A l° and a scale factor was carried out. It was 11 
found that A]~ = ATI = A 9, = 0 (A]~ = 0.09 + 0.08, 
A~l = 0.06 +_ 0. I l, A9~ = 0.07 + 0.13). It follows that 
the space group is centrosymmetric, Fm3m. 

We therefore fixed the three preceding parameters 
A2o+, to zero (space group Fm3m) for the further I I  
refinements, whose results are summarized in Table 1. 
The calculated structure factors obtained with the cubic 
harmonics up to the order 10 are listed in the paper 
dealing with the Frenkel model (Amoureux, Bee & 
Damien, 1980). 

With the aim of improving the fit (R w = 10.3%), we 
then introduced the coupling translation-rotation in the 
analysis of the Bragg intensity, following the method 
described by Press, Grimm & Hfiller, 1979 (Appendix 
D).* However, in spite of the seven new coupling 
parameters, the residual R w fell by only 0.8%. 

The Bragg intensities corresponding to large Q 
values are sometimes important (i.e. 0,0,12). Therefore 
the contribution of the cubic harmonics of the order 12 

* Appendices C and D and a list of structure factors have been 
deposited with the British Library Lending Division as 
Supplementary Publication No. SUP 35336 (8 pp.). Copies may be 
obtained through The Executive Secretary, International Union of 
Crystallography, 5 Abbey Square, Chester CH 1 2HU, England. 

may not be negligible. With three more parameters, 
A 1~,'2 A ~2,~2 A22~2 (nine in all for the space group Fm3m), R w 
fell from 10.3 to 2-5%, but the three new coefficients 
were obtained with less accuracy than the previous 
ones. 

In Fig. 1 the orientational average of the density of 
the tertiary carbon atoms is represented in the (1 i0) 
plane with respect to the crystal axes. 

CCT(0,~0) = ~. A t b t m,(CT) K t m(O,~). (13) ram' , 
t , m , m '  

This average nuclear density is nearly the same before 
12 and after introduction of the A,,,,, parameters. The 

physical description of the structure is then obtained 
using only the cubic harmonics up to the order 10 (six 
parameters in all). The stereographic projection (Fig. 2) 
of CCT(r) shows quasi-isotropic librations and so 
justifies the isotropic Debye-Wal ler  factor (Willis & 
Pawley, 1970) we used in the Frenkel structure of 
adamantane (previous paper, Amoureux, Bee & 
Damien, 1980). The results obtained in the previous 
paper concerning the equilibrium positions and the 
translational and librational displacements ( ( U 2 X > v r e n k e l  

2 1/2 = 0.048 _+ 0.003/~2, ( 0 t s o t r o p i c ) F r e n k e l  -- 9.0 +_ 0.2 °) 
are in very good agreement with those we present now. 

As there are some small slightly negative regions for 
CCT(r), we examined the method described by Hfiller & 
Press (1979) in which positive-definite functions for 
C,(r)  and f(og) are always obtained by fitting the 
coefficients of the average potential to the cubic 

t (~). However, this method is not possible rotators Urn, ,, 
in our case as this potential development on the cubic 
rotators converges too slowly (Appendix C). We have 
represented in Fig. 3 the molecular orientation 
probability density f u n c t i o n f ( ~ )  versus v, the rotation 
angle round the 1111], 11101 or [001l axis. It can be 
seen that f (oJ)  remains positive within the error bars. 
However, if we take into account the accuracy of the 
results on f ( w )  and then on the potential barriers, no 
real physical information on the reorientations can be 
obtained. 

Table 1. Results for  adamantane, C ~0 H,6 

2 (01sotropic) in Tables 1 and 2 is calculated for isotropic harmonic librations. 

( U 2 X )  /[42 \1/2 
\Visotropic/ 

R,, (%) R (%) (h 2) (o) Ah Ah 

61.3 55.9 0.010 0.534 
43.8 26.9 0.036 0.611 0.468 
12.5 7.3 0.043 11.4 0.653 0.551 

0.044 0.657 0.557 10.3 6.4 8.6 +_0.004 _+0.012 +0.009 
2-5 2.1 0-046 8-5 0.653 0.565 

+0.001 +0.003 +_0.003 
2.4 2- 1 0.046 8.4 0.653 0.564 

-+0.001 _+0.003 +0-002 

12 AI2 AI2 A i Al°ll AI~ A22 21 22 

0.378 
0.379 0-367 

+_0.010 +0.061 
0.393 0.256 0.082 -0-357 0.218 

+0.003 +0.018 _+0.019 +_0.098 +_0.026 
0.393 0.254 0-087 -0.337 0-022 0.390 

+0-003 +0-018 _+0.020 -+0.099 _+0.023 +0.118 
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IV. Structure determination of  2-adamantanone, 
C t0 H t4 O, at room temperature 

The 106 experimental structure factors and the six 
parameters defining the molecule we use are those 
described in the paper on the Frenkel structure model 
(Amoureux & Bee, 1980). As for adamantane, we 
found a f.c.c, lattice with parameter a = 9.524 (4)A, 
z = 4, and with only three possible space groups: 
Fm3m, F2~3m, F43 2.2-Adamantanone, tricyclo[ 3.3.1.1 ]- 
decan-2-one, is obtained from adamantane by substi- 
tuting two methylene hydrogens bonded to a secondary 
carbon by an oxygen (Fig. 4). If we suppose that this 
substitution does not change the rest of the molecule, its 

symmetry is mm2. The decomposition of b , (0 ' ,¢ ' )  
needs many symmetry-adapted functions and so we 
have many different parameters A t to refine. The ram' 
molecules of adamantane and adamantanone being 
very similar, in the following we shall determine the 
2-adamantanone structure by using the average density 
of adamantane. With this approximation (7% of the 
electrons), we obtain again a high symmetry (zl3rn) for 
b , (0 ' ,¢ ' )  and so only a few parameters A]~ to refine. 
Corresponding to the previous approximation, we then 
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Fig. 1. The orientational average nuclear density in the (1 [0) plane, 
for the tertiary carbons of C10H,6, using cubic harmonics up to 
the order 8 (dashed curve) or 10 (solid curve). The circle 
corresponds to the value l/4rr for a completely random 
distribution of orientations. 
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Fig. 2. Stereographic projection of the angular part of the tertiary 
carbon density. On Figs. 2 and 3 the description is obtained with Fig. 4. MolecuLe of Cl0Hl40 defined in a set of orthonormal axes 
cubic harmonics up to the order lO. attached to the centre of mass of the four tertiary carbons. 
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Table 2. Results for  2-adamantanone, C~0H140 

(U2X) t/~2 \1/2 
\ ~lsotroplc/ 

R,,(%) R(%) (A 2) (o) A~, A~t A~ 

65.5 59.8 0.012 0.549 
40.4 32.2 0.051 0.605 0.472 

0.079 0.665 0.556 0.539 10-4 10.9 11 
+_0.004 +_0-024 +_0.020 +_0-040 

The authors thank G. Odou for measuring the 
intensities and C. Carpentier and M. Muller for 
growing the single crystals. We thank also W. Press, 
A. Hfiller and J. More for their extensive friendly advice. 

A P P E N D I X  A 

Normalized cubic harmonics 

analysed the structure of 2-adamantanone using cubic 
harmonics only up to the order 8. 

To find the correct space group (Fm3m, F43m or 
F432) we carried out a fit with all seven parameters: 
(U2X), A]I ,  h a l ,  A611, A]I  , A l l  and a scale factor. The 
values we obtained proved that the space group is 
centrosymmetric: Fm3m (A]I = 0- 13 + 0.11, A171 = 
0.11 + 0.13). 

The results of the further refinements performed with 
the space group Fm3m (A~I = A~I = 0) (Table 2) are 
very similar to those of adamantane.  These results are 
in very good agreement with the corresponding values 
obtained by the Frenkel model: (U2X)Frenkel = 0"074 + 
0.004 A2; /,Q2 \1/2 = 9.5 ° + 0.3 o. \ Visotropic / Frenkel 

D i s c u s s i o n  

The refinement of the adamantane crystal structure 
(residual R w = 10.3%, R = 6.4%) starting with 90 
independent measured reflexions has been carried out 
with only six parameters. Owing to the preceding 
structural study of this compound we think that for 
most plastic crystals with globular molecular skeletons, 
the average density is very well described by cubic 
harmonics up to a maximum order of 12. However, for 
some more linear-shaped molecules (i.e. symmetry 3m 
or 6m2) with very anisotropic librations the 
decomposition of C,(O,~o) on symmetry-adapted 
functions may converge too slowly and then other 
methods can be used (Amoureux & Bee, 1979). 

Cubic-harmonics analysis always requires the mole- 
cule to have a very high symmetry (m3m, 2,3m, 
3m, 6m2), but we have shown for 2-adamantanone 
(mm2) that it is sometimes possible to fulfil this 
criterion with some simple approximations on the 
molecule. 

We have demonstrated that the coupling between 
translation and rotation of the adamantane molecule 
has no effect on the experimental structure factors. By 
introducing this phenomenon in CBr 4 ( (u2x)  = 0.19 
]k2' \/A2Vlsotropic/\l/2 ~ 20°), Press, Grimm & Hfiller 
(1979) reduced R w from 7.7% to 3 .4% with three 
additional parameters. 

These two studies reveal, according to the 
amplitudes of the displacement, the importance of the 
effects of this coupling on plastic crystal structures. 

Cubic harmonics Kt, m are linear combinations of 
spherical harmonics Yt, m which form the basis for an 
irreducible representation of the cubic symmetry group 
(Von der Lage & Bethe, 1947; Altmann & Cracknell, 
1965), 

t 
Kt, m(O,~o) = ~ Yt.n (O, to) Sn,m 

n=--I 

(0,~0) denote the polar angles of either the positional 
vector r or the momentum transfer Q. 

x = s i n 0 c o s ~ o ,  y = s i n 0 s i n ~ o ,  z = c o s 0 .  

- Functions in square brackets indicate the cubic 
harmonics with the normalization factor omitted. 

Example: [ K4,1 ] = x 4 + y4 + z 4 _ 0.6. 

(47() 1/2 K0,1 = 1. 

(4g)  1/2 K3, I = (105) 1/2 xyz. 

(4z0VEK4,1 = 1.25 (21) 1/2 (x a + y4 + z a _  0.6). 

(4701/2 K6,1 = 231 (26) 1/2 (xEy 2 z 2 + [K4,1]/22 

- -  1/105)/8. 

(4:n:)V2 K7,1 -- 2.75 (1365)1/2xyz (x 4 +y4 + z 4 _ 5/11). 

(4z0v2 K8,1 = 65(561)1/2 (x 8 +y8 + z 8 - 5.6[K6.11 

- -  210 [K4,11/143 - 1/3)/16. 

(4~)v2 K9,1 __ N9,1 x y z ( x 2 y 2  z 2 + 3 ( x  4 + y4 + z4)/34 

-- 27/442). 

(4x)VZKl0,1 = 11 × 17 × 19 (227.5) 1/2 

× (xlO +ylo +z lO_45[Ks ,  1]/19 

- 126[K6,11/17-- 2101K4,11/143 

- -  3 / 1 1 ) / 8 0 .  

(4~)1/2 gl2,1 __ NIE, I(X12 + yl2 + z 1 2  66[K10.1]/23 

-- 495[K8.~]/133 -- 2772[K6.1]/323 

-- 315[K4.1]/221 -- 3/13). 

K12.2 = 4(145/33) 1/2 ~,12.4/15 -- (19307/33) 1/2 

× ~q2,8/30 + (371/11) v2 

× ~,12. ~2/30 

with N9,1 = 2187.44, N12,1 = 1582.0556. 



], I11 

D i r e c t i o n  

I lo01 

I1101 

I I l l l  

J. P. A M O U R E U X  A N D  M. B E E  

Tab le  3. The (47r) ~/z Kt.,,, values  in the three s implest  co ' s ta l lographic  direct ions 

3,1 4,1 6,1 7,1 , 8,1 9,1 10,1 12,1 12,2 

2641 

0 v/21/2 k/26/4 0 v/561/8 0 v/227.5/8 3.4775 0 

0 -v /21/8  --13 v/26/32 0 9v/561/128 0 v/227.5/256 -0.64187 -2.931 

V/35/3 - V/(7/3) 4 k/26/9 - V/455/9 V/561/27 2.2576 --16~/227.5/81 --0.27427 --2.059 

(471:) 1/2 ~12,4 = 15 (2002)  v2 sin 4 017429 COS 8 0 

- -  9044 COS 6 0 Jr- 3230 COS 4 0 

- -340  COS 2 0 + 51 COS 4rp/2048. 

(4re) l/2c -- 5(33 X 13 X 17 X 19) v2 Y12,8 - -  

x s i n 8 0 [ 1 6 1 c o s 4 0 - 4 2 c o s 2 0 +  II 

x cos 8~p/1024. 

(47r) v2" - 5 ( 1 3  x 1 4 x  1 7 x  19 x 23) v2s in  ' 2 0  Y12, 12 - -  

x cos 12¢p/2048. 

T h e  (47r) v2 Kt. m values  in the  th ree  s implest  c rys ta l lo-  
g raph ic  d i rec t ions  are  listed in Tab le  3. 

A P P E N D I X  B 

C u b i c  r o t a t o r  f u n c t i o n s  

t H e r e ,  t h e  c u b i c  r o t a t o r  f u n c t i o n s  Umm, ((t))  a r e  g i v e n  in  

t e rms  o f  the W i g n e r  matr ix" 

Dtm,(rt,fl,7) = dtm,( f l )  expl-- i (m~t + m'7)] .  (B1) 

09 = (~t,f l ,7)  are  the  Euler  angles  (Rose ,  1957). 

t I 
I UImm'(('O) = Z Z Ol ,q (o - ) )  S~lm S q m "  ( B 2 )  

A = - I  q = - I  

If  we  cons ide r  the  S~m values  and  the fo l lowing  
relat ions" 

S 2 P  A = 2p . q 2 V +  l __ ~ ' 2 p +  I 
S m x  " - mx --  - - ~  mA ' 

( 3 3 )  
d~aq (fl) = ( -  1) a +q dtoa (,6') 

we obta in  (6 is the  K r o n e c k e r  symbol )  

p/2 
U2mPm,((A)) = ½ ~. S4j ,  m S4k, m' [2{1DI.iv " 4k(0"))  

j,k=O 

+ D]jP_4k(w)] I4 -- 26jk.o-- fii+k.o]. (B4) 

E q u a t i o n  (B4) i l lustrates  the re la t ion  

U2mPm, ((l,t~,~) = U2Pm (y,t~,(l ). ( 3 5 )  

As d~ . ( - C )  = d ~ _ q ( C ) ,  we have  only  to ca lcu la te  (C  
- -  COS ~3): 

d~q(fl) = s ina-q(f l ) [  1 + C] a gtaa(C ), for l _> 2 >_ q _> O. 
(B6)  

P4 o = 

P~4 = 

P6 0 = 

P6 0 = 

P6 4 = 

p8 o = 

P~8 = 

P4S4 = 

PS o = 

e . " o  - 

P,S 4 = 

= 

( 3 -  30C  2 + 35C4) /8 ,  P]o = k / ~ / 1 6 ,  

1/16. 

( - 5  + 105C 2 -  3 1 5 C  4 + 231C6) /16 .  

3 V / ~  ( 1 1 C  2 -  1)/32, 

(13 - 4 4 C  + 33C2) /32 .  

35(1 - 3 6 C  2 + 198C  4 - 1716C6/5  

+ 1287C8/7) /128 .  

1/256.  

( - 9  - 78C  + 5 4 6 C  2 -  9 1 0 C  3 + 455C4) /64 .  

3(154) ' /2(1 - 2 6 C  2 + 65C4) /128 .  

3 ( 1430) v2/256.  

(455)1n /128 .  

( - 6 3  + 3 4 6 5 C  2 -  3 0 0 3 0 C  4 + 9 0 0 9 0 C  6 

- 1 0 9 3 9 5 C  8 + 4 6 1 8 9 C ' ° ) / 2 5 6 .  

P4 L° = (I + 3 0 0 C -  1245C 2 -  6 8 0 C  3 + 8 4 1 5 C  4 

- 11628C 5 + 4 8 4 5 C 6 ) / 1 2 8 .  

p~o = ( 5 9 -  152C + 95C2) /512 .  

P4 ~° = (4290)  '/2 ( - 1  + 4 5 C  2 - 255C 4 + 323C6) /256 .  

P~o°= (24310)  '/2 ( - 1  + 19C2) /512.  

P~4°= (51) '/2 (11 - 76C  + 95C2) /512 .  

P~o 2 = 231(1 - 7 8 C  2 + 9 7 5 C  4 -  4 4 2 0 C  6 

+ 6 2 9 8 5 C 8 / 7  - 8398C1O 

+ 9 6 5 7 7 C ' 2 / 3 3 ) / 1 0 2 4 .  

P4~o 2 -- 3(77 x 13) '/2 (5 - 340C 2 + 3 2 3 0 C  a 

- 9 0 4 4 C  6 + 7 4 2 9 C 8 ) / 2 0 4 8 .  

P4~42 = (239 - 11560C + 2 9 9 8 8 C  2 + 162792C 3 

- 6 1 0 4 7 0 C  4 + 1 6 2 7 9 2 C  5 + 1 4 9 2 2 6 0 C  6 

- 1 9 6 1 2 5 6 C  7 + 7 3 5 4 7 1 C 8 ) / 4 0 9 6 .  

P~o 2 = (66 x 13 x 17 × 19) '/2 (1 - 4 2 C  2 + 161C4). 

P~] = (6 x 7 × 17 × 19) '/2 ( - 9  + 12C + 330C 2 

- 1012C 3 + 759C4) /4096 .  
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P~] = (673 - 5208C + 13398C 2 -  14168C 3 

+ 5313C4)/2048.  

,2 = (7 × 13 × 17 × 19 × 23)'/2/2048. PI2. O 

e~22,4 = 3(11 × 17 × 19 × 23)1/2/4096. 

P~2.8 = (21 × 22 × 23)~/2/4096. 

P~,12 = 1/4096.  

The single terms S t , .  not equal to zero are the 
following: 

$ 3 2 , = - i / v / 2 ,  S~ ,=- ik /3-9 /12 ,  

S~, : - i k / ~ 1 2 ,  $ 9 , : - 0 . 4 3 3 0 1 i / v / 2 ,  

S91 = 0 .90139i /x /Z,  

So41 = (7/12)  v2, $44, = (5/24) 1/2, 

$6~ = 1/(2v/2),  $46~ = -  (7)'/2/4, 

S08, = (33)1/2/8, $48~ = (7/6) ' /2/4,  

$88~ _- (65/6)~/2/8, 

S~o= (65/6)'/2/8, S~4°=- (11)v2/8, 

S~ ° = - ( 1 1  × 17/3)1/2/16, 

S~] = 0 .69550266 ,  S~] = 0 .22212032,  

$8 ~ 2 = 0 . 2 4 6 3 9 1 0 3 ,  S~2~2.~--0"3848273, 

$4~2---4(5 × 29/66) ' /2/15,  

S 12 - ( 4 3  × 449/66)1/2/30, 82 ~- 

12 = (7 × 53/22)l/2/30. 512,2 

If  we want  to carry  out a v angle rotat ion around a 
simple crystal lographic  axis, the corresponding Euler 
angles are obtained with the following formulae:  

R(v)[OOl l : f l :O,  a + y : v ,  
R ( v ) [ 1 1 0 1 : a = 2 2 5  ° , f l = v ,  y =  135 ° , 

o r ~ = 4 5  °, f l - - - - v ,  ~ = - 4 5  ° , 

[ 1 cos + sin  ] 
R ( v ) [ l l l l ' a = - - a r c c o s  • , 

2 v/(2 - cos 2 v - cos v) 

1 + 2 c o s  v ]  
/3 = arc cos 

3 

7~ 
y = t t  + - .  

2 
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Abstract 

The barbituric acid derivative 5-ethyl-5-isopentyl- 
barbituric acid (known as amobarbi ta l  or Amytal )  has 

0567-7408/80/112642-04501.00 

two polymorphic  forms in which the hydrogen-bond 
systems are identical but the space group is different. 
Another  derivative, 5,5-diethylbarbituric acid (known 
as barbital or Veronal),  has three polymorphs  with 
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